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THE DEPENDENCE OF THE SOLUTIONS OF THE EQUATIONS OF MOTION OF 

MECHANICAL SYSTEMS ON A LARGE PARAMETER* 

V.V. SAZONOV 

The differential equations of motion of a mechanical system with a 
finite number of degrees of freedom containing a large parameter u are 
considered. The parameter characterizes the potential forces operating 
in the system in some of its generalized coordinates. It is proved that 
the solutions of these equations exist in a time interval of length 

-pa (0 < a < '1,) and they converge as P--t 00 to the solutions of de- 
generate equations obtained from the original ones by putting p=co. 
The proof is carried out under the assumption that the solution 
generated is stable to a first approximation, the frequency of fast 
oscillations of the system is constant and a series of rather complex 
restrictions are satisfied. 

The equations of the type considered were previously studied within 
the framework of the problem of realizing ideal constraints using large 
elastic forces. Under less-restrictive conditions analogous results 
were obtained but for a time interval whose length remains bounded as 
p-++=J. 

1. Consider 
following form: 

a mechanical system whose motion is described by Lagrange equations of the 

d aT* dT* 

dt’ Gj a41 
--=-pr’+Qj (j=l,...,Z) 

T*=+ i aik(q1~...7qn)qi’qk’+ 
i, k=l 

(1.1) 

Here ).I is a positive parameter, f <n< I, and the matrix (ai,)i,h.=r in the expression 

for T* is symmetric and positive definite. We will investigate the behaviour of a class of 
solutions of system (1.1) as IL-+ +OO. To give a precise statement of the problem we change 
in (1.1) to Routh variables qj, qj', pa, Pa = BT*/aq,' (j = 1, . . ., n; u = n T 1, . . ., 2). Introduc- 
ing the vectors q = (&, . . ., q,)Tt X = (&t+l, P”+I, . . ., ql, ~1)~ and defining in a necessary way the 
symmetric positive definite matrix A,(q) of order n and the functions F(t,x, q,q’)E R2(1-n), 
f (4 5, 9, 4’) E Rn, the Routh equations of the mechanical system considered can be written in 
the form 

(1.2) 

Writing down the equation is interesting in itself since the equations of motion of some 
mechanical systems can be reduced to the form (1.2) without using the Routh variables. Below 
we shall consider Eq.(1.2) independently from Eqs.(l.l). We assume that in (1.2) x and FE 
R”(m>O),q and fER”(n>l),IIsR1,A,(q) is a symmetric positive definite matrix of order 
n; n (g), -4, (q), f 0, 5, q. 4’) and F (4 5, 9. 4’) are assumed to be sufficiently smooth functions 
of their arguments, i.e., having all derivatives that are necessary for the analysis that 
follows. We also assume that XI(O)/@ = 0 and the matrix a2II (O)/aqz is positive definite. 

The system 

i = F (t, I, 0, 0) (1.3) 

is called degenerate. Suppose that it has a solution z = 'p(t) defined in the interval 
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o<t<+‘x. Below, under certain conditions, we prove the following assertion: for any 
numbers Ci > 0 (i = 1, 2, 3), L > 0 and a E (0, */,) there exist positive constants M, Cqr C, 
and C, such that for any p > M the solution s(t, n)? 4 (t, 1~) of system (1.2) with initial 
conditions satisfying the inequalities jIz(O, p) - cp (O)II < C&l, II (I (0, p)II < C,pP and II Y’ W, 

r-l) II < cd-‘? is defined in the interval OQ t_,< Lu" and satisfies there the estimates Ils(t, 

P) - 'p (i) II G c&P”-‘, II cl (h cl) II < c,y-“, and II Q’ (4 p) II < CN. Here (I (( denotes the Euclidean 
norm. 

The equation for 3 may not be present in system (1.2) (m = 0). In such a case we consider 
the second equation of (1.2) whose right-hand side does not contain the vector x and its 
solution q(t, p) with initial conditions II 4 (0, k)lj < C,~L-~, /I 4' (0. p)II < C,u0. For ., M 
we prove the existence of such solutions in the interval 0 :< t< Lp” and we show that Ehey 
satisfy the estimatesllq (t. p)II < C&z, I/ y' (t, p)/I << C,u-*. The numbers C,, C,, L E (0, +-) and 
fl cz (0, 'i,) are arbitrarily given the numbers M, C,, C, E (0, +cc) are found as functions of 
C,, C,, L, and a. The investigation of this equation is obtained from the investigation 
of system (1.2) by omitting the arguments referring to the vector X, and they are therefore 
not presented. 

2. To construct the desired solutions of system (1.2) it is necessary to carry out some 
transformations analogous to those used in /l/. We will first describe these transformations 
formally and we shall then formulate the conditions imposed. In system (1.2) we change the 
variable z = 'p (t) + f and multiply the second equation by A,-‘(q) from the left. In the 
equations obtained we select in explicit form some terms that are linear with respect to E, Q 
and q’. As a result we have 

E' = A (9 5 + F, (6 E, Y, 9') 

4" + IL2& = B (t) 5 + C (t) 4' i- f1 (& 5, 4, 4') + P211, (4) 
A (t) = aF (t, cp (t), 0, O)/az, B (t) = A,-l (0) af (t, ‘p (t), 0, O)/ar 

C (t) = A,,-’ (0) af (t, ‘p (t), 0, o)iaq*, A\ = A,-’ (0) am (o)iag- 

(2.1) 

and as s, 4, y'+O the following estimates hold: 

FI 53 4’) = 0 (h 9, (II 4 II II + 4.11 + II E II”), 11, (d ( II = 0 4 II”) 
fl cc 5. u’) - (k 93 fl 07 0, 0) ( II = 0 Q II + II Y’ + 5 II2 II II3 ) 

Since the matrices A, (0) and @II (0)/8yz are symmetric and positive definite, the 
corresponding quadratic forms can be simultaneously reduced to canonical form. In other words, 
there exists a non-degenerate matrix S of order n such that 

ST/l" (0) S = E, (2.2) 
ST (d"n (oyap) S = diag (0,%,,, . ., w,~E,,) 

nj>“(i=l! . . ..r).n,+n,+...+n=n,O<o,<o,< . . . 

-=c 0, 

Here Ek is the unit matrix of order k. Changing the variable y-f Sq in (2.11 we shall 
assume that the matrix A in this system is identical with the right-hand side of the second 
formula of (2.2). 

The following transformations are used to simplify linear terms of system (2.1). The 
substitution 4 = z + QA-'B(t)~ reduces this system to the form 

E' = A (t) 5 + F, (t, 5, z, 2.9 1) (2.3) 
2" + pZA2 = c (t) 2’ + fz (t, 5, z, z’, p) + p%, (2) 

where for E, z, z', u-1 + 0 we have 

F, (t, 5, 2, 2.9 P) = 0 ( II z II + II z’ II + IL@ II 5 II + II 5 II2 ) 
fz” (G 4 = 0 (I), fz tt, E, z, z’, IL) - fs” ct, II) = 

0 [ II z II + IL-2 ( II 5 II + II z’ II 1 + II E II2 + II z’ II2 1 

Here and below we use the notation g" (t, p) = g(t,O,O,O, p) for any function g(t, ., ., ., p). 
As a result of this substitution the term B(t)E, vanished from the second equation of the 
system investigated. 

The next transformation is used to simplify the term c (t) z’. Instead of z we introduce 
a new unknown function 

U = z + y-V) (t) z’ (2.4) 
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The explicit form of the matrix D(t) will be shown below. Differentiating relation 
(2.4) twice with respect to t we obtain, by virtue of system (2.3), 

u' = -BAz + IE’, + ~19 (D’ i- DC)1 z’ + D fk, -I- p-Z&) (2.5) 

u” = -+A2 + (C - DA) z’ + f*’ (L E, 2, z’, p) i pZk* (2.6) 

The function la' in (2.6) satisfies as f,z,z', ~0 --PO the same estimates as the function 
fZ in (2.3). Solving the relations (2.4) and (2.5) for z and z' we find 

z==u-- F-~D (a’ + D [AZA - k, (%)I} + 0 fbc-“) 

i = u’ + D [Aa - hl @)I + 0 (p-%) 

Substituting the expressions obtained into (2.6) and the first equation of (2.3) we 
arrive at the system 

(2.7) 

Here 

C’ (t) = C (t) f AD (t) - D (t) A (2.5) 

and as E, u, u', p-1--+ 0 we have the estimates 

The estimates of ,f3 are obtained from the estimates of fz by the change z + U, z' -f u'. 
We will describe the construction of the matrix D. We will represent the matrices c,C' 

and Din block form where the decomposition info blocks is the same as in the second formula 
of (2.21: c = (c&i !+I, c' = (Cjp‘)J,k=l, D = (Djk)j,k=2. Here CJ,, C$R' and Djk are matrices of 

dimensions n, X n,. The relation (2.8) can be written in the form 

C1,' = Cfr + (Wj' - o~')DJ, (j, k = 1, . . ., I^) 

We define the matrix D (t) by the formulae: Dlx=(wli2- wj2)-iCjk for j=#=k and Djj = 0. 
In this case 

C’ (t) = diag (Cl,, . . ., C,,) 

We consider the linear systems 

uja = 112cJj (t) uj, %JE@J, O<t<+a? (j=i, . ...?-) (2.9) 

We shall assume that they are reducible in the sense of Lyapunov /2/, i.e., there exist 
changes of variables wj = Yj(t) yj, where Y,(t) are Lyapunov matrices and yj r~ R”l, such 
that these systems axe transformed into the systems yj' = H,yj (j = 1, . . . . r) with constant 
matrices. We put 

Y tt) = diag (Yr ft), . . ., Yi (f)), H = diag (II,, . . ., H,) (2.10) 

The change of variables u = Y(t) y transforms (2.7) into the system 

E” == fl (4 f i 1F1 (4 E, y, Y’, IL) 
Y" - =Y' + (@A -t- Hz) Y = ji (1, E, y, y', u) + @h, (t, y) 

(2.11) 

where the functions Fb,f: and It, satisfy as E, y, y‘, ~0 --f 0 analogous estimates as the 
functions F,,f, end k, as e, U, u', I"_'+ 0. 

We will now make a series of assumptions for Eqs.fl.2) and the transformations carried 
out. The system 

5' = A (t) E (2.12) 

is a system of equations in variations for the solution 
% (G 5) 

I = Y (t) of Eq.tl.3). We denote by 
the fundamental matrix for solutions of system (2.12) with initial condition 

s) = E,. We assume that this matrix is bounded on the set O,<S < t< +05. 
% (9, 

We also assume 
that the eigenvalues of the matrices H, (j = 1, . . . . r) have non-positive real parts and the 
eigenvalues lying on the imaginary axis have simple elementary divisors. 
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By the estimates satisfied by the functions F,, ,fl and h, of (2.11) as %, y, y', pm1 + 0. 
for any t>0 there exist positive numbers 6,K and M, such that for all p, E, 11(n E ."'), 
Y. Y’, u, u’ that satisfy the inequalities 11 22 M,, max (11 E 11, I( q 11, /I y (I, (1 y’)(, /I u (I. II ~‘11) < 6 we 
have 

II F,O (4 ~1 II < Kp-, II d”‘fl” (k pW’/I < K (m = 0, 1, 2) 
II Fb (6 53 Y, ~‘7 cl) - FI’ (t> CL) II < K ( II Y II + II Y’ II + P II 5 II + 

II 5 II2 ) 

II fi (G 5, Y, Y’, p) - fi” (k II) II < K [ II Y II + P-~ ( II Y’ II + II 5 II ) + 
II Y’ II2 + II 5 II2 1, II h, (h Y) II < K II Y II2 

II Fk (6 5, Y, Y’, p) - F4 (t> ‘1, u, u’, IL) II < K (a$ + a, + 4 
II fb (k 5, Y, y-9 PL) - fk (t. rl, u, ~‘7 14 II < K [a~ + B (a, + 41 

II h, (b Y) - h, (k u) II < Km, ( II Y II + II u II 1 
%I = II 5 - 9 II, a1 = II Y - u IL a.2 = II Y’ - U’II 

8 = II E II + II rl II + II Y II + II u II + II Y’ II + II u’ II + CL-2 

(2.13) 

(2.14) 

(2.15) 

We shall assume that the numbers 6, K and M1 satisfying the properties indicated can 
be chosen independently of t for t 20. In other words, the estimates (2.13)-(2.15) are 
satisfied uniformly in t in the interval O,< t<fca. Under the assumptions imposed we have 
the following theorem. 

Theorem. For any numbers L > 0, B, > 0, B, > 0 and a E (0,1/J there exist positive 
constants M, B, and B& such that for any p> M the solution % (t,p), ~(t, p) of the 
system (2.11) with initial conditions satisfying 

II E (0, IL) II < 4W’t II Y (0, PI II < 4P7 II Y’ (0, I4 II < h--’ 

is defined in the interval 0 < tQ Lp’ and satisfies there the estimates 

II 5 (1, cl) II < B&-‘, II Y (k PI II < &!--2? II Y’ (k P) II < B*C (2.16) 

Remurks. lo. If in addition to the assumptions imposed we require that the matrices 
B (t) pa-" and D (6 P are bounded functions of t and u for O< t<Lp, p> M, then from the 
theorem it follows that the assertion formulated in Sect.1 about the existence of solutions 
of system (2.2) close to the generated solution z=q(t),q=O, holds. 

2". Formulating the theorem we made three main assumptions regarding the transformations: 
1) on the reducibility in the sense of Lyapunov of systems (2.9) to systems with constant 
stable matrices, 2) on the stability of system (2.12), i.e., on the stability in the linear 
approximation of the solution .z= Y(t) of the degenerate system (1.3), 3) on special uniform 
estimates of the functions r;r,fd and h, as E,Y,Y’, P-0. We will consider the verification 
of these conditions in simple situations. Suppose, for example, that the generalized forces 
9, (i = 1, ., I) in Eqs.(l.l) are potential. Without loss of generality we can assume that 
the matrices A,(O) and PU (0)/&a are identical with the right-hand sides of formulae (2.2). 
Then in (2.3) we have P(t)== -c(t). Using the last relation we can show that the fundamental 
matrices X;(t) of systems (2.9) with initial conditions X1 (0) = Eni are orthogonal: x1-1 (t) = 
x/r @). In this case we can take Yf((f)= Xj(t),Hj= 0 in (2.10). In this way there exists a 
substantial class of mechanical systems satisfying condition 1). Suppose now that system 
(1.2) and the solution Y,(t) are periodic. Then condition 3) and the condition of Remark 1' 
are trivially satisfied and the verification of conditions 1) and 2) is simplified. 

In general, all three conditions are introduced to guarantee the possibility of investi- 
gating the solutions of system (2.11) in time intervals of arbitrary length. If, for example, 
system (2.12) or one of system (2.9) is exponentially unstable, then estimates (2.16) as O,i 
t< up, p-+ CO, are impossible. In this connection it is interesting to compare the theorem 
formulated above with the results of 13, 4/. The theorems of /3, 4/ guarantee the existence 
of solutions of system (2.2) close to the solution generated Z= m(t), p = 0 under considerably 
less restrictive conditions but in the time interval with bounded length as p++ DO. 

3. We will give some relations used in the proof of the theorem. We will consider the 
initial problem %((I) = %0 for the linear non-homogeneous system corresponding to the first 
equation in (2.11) 

5' = A (t) E + F (t) (3.1) 

Using the matrix a,, (t,s) introduced above the solution of this problem can be rep- 
resented in the form 
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Here and henceforth the integration is taken over the interval IO, 11. 
We call the number v~(fl = maxI/ f(t)11 (O< t< T) the norm of the vector function f (4 

interval O< t< T. Since the matrix @0 (t, s) is bounded on the set continuous in the 
o<s<t<+00, 

The solution 
ing to the second 

can be written in 

the norm of the solution of (3.2) satisfies for any T 20 the estimate 

VT (5) Q No (II %011 + TVT PI), NO = cm > 0 (3.3) 

of the initial problem y (0) = y,, y' (0) = y,' for the linear system correspond- 
equation in (2.11) 

. . 
Y - 2HY' + (PA + HZ) Y = I(t) (3.4) 

the form 

Y (t) = @I (t) Y, + @, (t) Y,' + sQ)z (t - s) f (4 ds (3.5) 

I&= diag 
sin po .t 

E,,, cospjt- HI* 
! 3 

eHjt 
I 

f j=I 

@,,(t)=diag 

The derivative of this solution is given by the formula 

y' (t) = @,' (t) y, + q’ (t) Y,’ + p%* (t - 4 f (4 ds (3.6) 

In view of the stability of the matrices Hi (j = 1, . . . . r) we can choose a positive 
number N1 such that for any T> 0 and ~12 1 for the norm of the solution of (3.5) in the 
case when y, = 0, y,' = 0 and its derivative we have the following estimates 

VT (~1 < CL-'N,T~T (f), VT (Y’) Q NITVT (f) (3.7) 

If the function f (4 in (3.4) is twice continuously differentiable, then making in the 
initial problem considered the change of variable y =z + p -p.\-lj (t) and applying to the 
resulting problem formulae (3.5) and (3.6) we obtain expressions for y and y' containing in 
addition to f also f and f”. From these expressions it follows that there exists a positive 
number N, such that the norms of the solution of (3.5) and its derivative satisfy for any 
T>O and f~ >I the estimates 

Z'T (~1 Q N,R, VT (Y’) < WP (3.8) 

R = (1 y, II + p-’ 11 Y,’ iI + p-+T (f) + P-3 {VT (f) + T [liT (f) + 
VT (f’) + VT (f”)]) 

4. The initial problem % (0) = %0*, y (0) = y,*, y' (0) = y,'* for system (2.11) is equivalent 
to the integral equations 

% (t) = '#', (t, 0) %o* + s@o (C s) F, [s, % (s), y (s), z (s), pl czs ES (4.1) 

&I (E, Y, z) 

Y (t) = @'1 (t) yrJ* + @* (t) ycl** + I@2 (t - s) {f‘ [s, E (4, Y (4, 

z (4. PJ + +a Is, Y Ml) ds - L, (I, Y, z) 

z (4 = @)I’ (1) y,* + Q)** (t) y;* + S%’ (1 - 4 if, [s, E (4, Y (9, 

z (s), ~1 + +, [s, Y (s)l} ds = L, (5, y, z) 

Here z = y', 0 <t< Lp”, L and a are arbitrary numbers from the intervals (0, +s) and 
(0, l/Q). We solve Eqs.(4.1) by the method of successive approximations. We construct the 
sequences of functions %h. (1), y, (t), ZB (t) (k = 0, 1, 2, . . .) in the interval 0,s t < .LpLo putting 

E. (t) E 0, y, (t) G 0, z0 (t) zz 0 (4.2) 
5 k-1 = L0 (Er7 Y,, ZK)? Yk71 = & (Sk, Yk, Zk) 

zt~ = L, (%k, Yk, zk) (k = 0, 1, 2, . .) 

We prove that for sufficiently small )I %,,*)),I)y,*I),I) y,'*I) and p-l these sequences 
converge to a solution of Eqs.(rl.l). To fix our ideas we will assume that %c,* = %o*(P),YO* = 

Y,*(P) and y,'* =y,'*(p) are continuous functions of p in the interval l,<pL(+rr and 
satisfy the inequalities 

II &I* II < BIP-7 Ii Y,* II < Q--2, II y,'* II < B,y-' (4.3) 

Here B, and B, are positive constants. 
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First we will prove the existence of positive numbers X,, B, and B, such that for 
!' _lll we have the estimates 

v if,,) : B .i{"-l 0, : fi> I‘ ig,,) .< ll,p--! ,,: 6, 2‘ (z,,) : 8,&t--’ ,; 6 (It.%) 

For brevity here and henceforth we omit the index 7' T= I,)\" in the notation of the norm 
Z‘T (.). 

Since 

51 (t) = Q, (t, 0) 5,* i 1% (6 s) F," (~7 n) ds 

y, (t) = @D, (t) Y,* f @, (t) Y,'* + 1%' (t - 8) fb” (~7 IL) ds 

21 (L) = a),,’ (t) y,* + %’ (t) %‘* + s cp,’ (t - 4 I&” (3, PI ds 

(4.5) 

the relations (4.2) for k >I can be represented in the form 

The expression for zk+*(t) can be obtained from the last formula by the change Ykfl - 

zk 11, Y, + Zlr @, -+ @,‘. 

We assume that v (ek) < 6, v (yr) < 6 and v (zh-) f 6. Then for p >max(l,M,) by inequalities 
(2.14), (3.3), and (3.7) we have 

v (&!+I) <v (5,) + K'LN,P' [v (Yn-) -I- v (%)-I- n-+ (Er) + v2 &)l (4.6) 
v &x+x) < v fvd + KLN,lc”-‘fit, v @r-id < v (2,) + KLN,p=& 

-Rk = y (Yk) + p-2 Iv hs) + v (Sk)1 + v2 (Zk) + v2 (Ed + P2v2 (Yr) 

Applying inequalities (2.13), (3.3). and (3.8) to relations (4.5) we obtain 

V (h) < N, ( 11 %o* /I + KLF*)> Y (~1) < Nd’, Y (21) < pN,P 

J’ = II YO* II + CL-’ II y,‘* II + KP-~ + KP-~ (1 + 3Ly”) 

Hence using estimates (4.5) for u >max(l,M1) we have 

v (51) < DIP-‘, v (~1) < D,P-~, v (ZI) & D,p-’ 
D, = N, (B, + KL), D, = Nz /2B, -t K (2 -f- 3L)l 

We choose the numbers B, and B4 such that the relations Bi >Da and BB>R~ =I), + 
K~N~B~ are satisfied and we take 

p 2 M, = max 11, IM,, (~~/~)l/(l-a), (BJS)‘$ B&Y, 

fK,/(B, - K,)l’/(l-aa), [K&B, - &)j~~(l-=)} 

K, = KLN, (B, + Bb + B$), K, = KLN, (B, + 2Rl + 
B,2 + Z&2) 

Then if inegualities (4.4) are satisfied for some k, then by (4.6) we have 

v (&+1) < K,pa-’ + K,p- Q B,P=-’ G 6 
v &+I) < D,P + K,P+ Q 41”” < 6 

and similarly v (zr+r) < B,n-' < 6. Since for L = 1 inequalities (4.4) are satisfied, they 
are true for all k. 

We will prove the convergence of the iterations (4.2). Consider the seguences ur = v(&r - 
&-I), b, =v (yr - ?!t-l), CR = v (zr - 211-l) (k = 1, 2, . . .)_ By virtue of inequalities (2.15), (3.31, 
!3.7), and (4.4) for n>AMz we have 

ar+~ < KLN,@ (%d, -t b, + ck), hz+l < i!k, C*+I < Pgk 
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gk = KLNlp”-’ [dk (ak + ck) + bk (I + paek)l 
4 = t’ (Sk) + ‘V (gk-d + v bk) + -+ (yk-1) + ‘V bk) + V (zk-1) + p-2 

ek = v bk) + v bk-l) (k = 1, 2, . . .) 

Estimating d, and ek by means of inequalities (4.4) we obtain 

&.+I < p,@ (/+ak + br + Ck), bk+l < gk’, Cktl < Pgk’ 

g,’ = P#-l [pa-’ (ah + cr) + b,l, P, = KL (28, + 4B, + 1) X 

max (N,, NI) 

Consider the sequence of numbers pk = p(a-3)'2ak + bk + uL-'ck (k = 1, 2, . . .I. For p>M= 

max [M,, (6Pl)a’(1-sn)l we have pk+l < pk/2 (k = 1, 2, . . .). Using this estimate we can prove that 

the sequences & (t), Y, (t), and Zk (t) converge uniformly on the set {(t,P): O,< t < Lp’,p 2 M) 
to some continuous functions E,(t,p), Y,(t, p) and z,(t, u) satisfying the inequalities 
obtained from (4.4) by the change &-+E,, yk-y,, zk-+z*. Passing to the limit in (4.2) as 
k+oo we find that 5* 0, cl)> Y, 0, IL), and z,(t,M) are the solutions of the system of 
integral Eqs.(4.1). The function E,(t, M) is continuously differentiable in t, the function 

Y, (t? p) is twice continuously differentiable in t, and Y,' (t. CL) = s* 0, CL). 
The uniqueness of the solution obtained can be proved in a standard way. 
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EQUIVALENT LINEARIZATION OF QUASILINEAR OSCILLATING SYSTEMS 

WITH SLOWLY VARYING PARAMETERS* 

L.D. AKIJLENKO 

The problem of the approximate reduction of quasilinear oscillating 
system with slowly varying parameters to a linear system that is 
equivalent in the asymptotic sense is investigated /l-3/. Two 
approaches are proposed based on intermediate "amplitude-phase" 
variables and osculating variables of the Van der Pol type. An 
equivalent linear system is also constructed with a prescribed degree of 
accuracy with respect to a small parameter. As an example a quasilinear 
oscillator /l-3/ is considered. 

The approach developed is based on well-known methods of equivalent 
linearlization J2-6J and is interesting from the point of view of 
applications, since linear equations can be investigated by standard 
methods. An adequate form of the equations is particularly important in 
the analysis and synthesis automatic controls systems having the 
required quality of transients /S-8/. 


